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Current gate-based quantum computers have the potential to provide a computational advantage if
algorithms use quantum hardware efficiently. To make combinatorial optimization more efficient, we
introduce the Filtering Variational Quantum Eigensolver (F-VQE) which utilizes filtering operators
to achieve faster and more reliable convergence to the optimal solution. Additionally we explore the
use of causal cones to reduce the number of qubits required on a quantum computer. Using random
weighted MaxCut problems, we numerically analyze our methods and show that they perform better
than the original VQE algorithm and the Quantum Approximate Optimization Algorithm (QAOA).
We also demonstrate the experimental feasibility of our algorithms on a Honeywell trapped-ion
quantum processor.

I. INTRODUCTION

Combinatorial optimization tackles problems of
practical relevance [1]. Applications include finding the
shortest route via several locations for a delivery service,
making optimal use of available storage space in logistics,
and optimizing a manufacturing supply chain to increase
the productivity of a factory. If quantum algorithms
can solve such problems even just slightly faster than
classical algorithms, this can have a large impact on
various sectors in industry and research.

Variational quantum algorithms are a promising
tool to get the most out of the current generation
of gate-based quantum processors [2–7]. These
algorithms employ parameterized quantum circuits that
can be tailored to hardware constraints such as qubit
connectivities and gate fidelities. In this context,
a common approach for combinatorial optimization
encodes the optimal solution in the ground state of
a classical multi-qubit Hamiltonian [8–10]. Popular
variational quantum algorithms such as the Variational
Quantum Eigensolver (VQE) [11] and the Quantum
Approximate Optimization Algorithm (QAOA) [12]
attempt to prepare this ground state by searching for the
circuit parameters that minimize the energy expectation
value of the corresponding quantum state. VQE imposes
no restrictions on the ansatz circuit and has become a
powerful method for quantum chemistry [13], condensed
matter [14], and combinatorial optimization [15]. For
combinatorial optimization problems, however, it tends
to produce sub-optimal solutions [16]. QAOA uses a
specific ansatz circuit inspired by adiabatic quantum
computation [17] and the Trotterization of the time
evolution corresponding to quantum annealing [18].
Despite its promising properties [19–21] and considerable
progress with regards to its experimental realization [22],
in general the QAOA ansatz requires circuit depths that
are challenging for current quantum hardware.

In this article, we introduce the Quantum Variational
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Figure 1. Performance of some of our algorithms. F-VQE
employs the inverse filtering operator. One optimization step
corresponds to one time step in HE-ITE and one update of
all parameters in F-VQE, VQE, and QAOA. (a) Average
approximation ratio (lines) and standard deviation (error bars
for HE-ITE and shaded regions for F-VQE, VQE and QAOA)
across 25 random weighted MaxCut problems. (b) Average
approximation ratio (line) and standard deviation (shaded
region) across 25 random weighted MaxCut problems. Inset:
causal cone widths – i.e. the actual numbers of qubits required
on quantum hardware – and their average frequency with
standard deviation.

Filtering (QVF) algorithm that optimizes a parame-
terized quantum circuit to approximate the action of
a filtering operator on this circuit. We also present
Filtering VQE (F-VQE) – a special case of QVF – which
is particularly efficient and similar to VQE. The main
focus of this article is F-VQE which, due to its low
quantum hardware requirements, is particularly relevant
for current quantum computers. We consider filtering
operators F ≡ f(H; τ) defined via real-valued functions f
of the problem Hamiltonian H and a parameter τ in such
a way that f2(E; τ) strictly decreases with the energy E
for any τ > 0. The parameter τ plays a role similar to the
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time step in imaginary time evolution (ITE) and the ITE
operator exp(−τH) is one example of a filtering operator
considered in this work. The repeated action of a filtering
operator on a quantum state projects out high-energy
eigenstates (corresponding to sub-optimal solutions of
the combinatorial optimization problem) and increases
the overlap with the ground state. Importantly, QVF
and F-VQE have no restrictions on the ansatz circuit
and so they can employ the ansatz most suitable for
the quantum hardware at hand. Furthermore we address
the question which filtering operators benefit from using
causal cones in the optimization, as that can drastically
reduce the required number of qubits of the quantum
hardware. Among the filtering operators considered in
this article we find that the ITE operator is the best
performing one that can be combined with causal cones.
We therefore focus on the combination of ITE with causal
cones for which the F-VQE method is equivalent to the
hardware-efficient ITE procedure in [23] (HE-ITE).

We investigate the performance of F-VQE for various
filtering operators and of HE-ITE using MaxCut
problems on random 3-regular weighted graphs of
different sizes. Finding the optimal solution for this class
of MaxCut problems is NP-hard [24, 25] and therefore
no classical polynomial-time algorithm is expected to
exist that achieves this goal. Given a weighted graph,
the MaxCut problem consists in finding the optimal
cut: a separation of the vertices into two disjoint
subsets so that the cut cost, i.e. the sum of the weights
of the edges between the two subsets, is maximum.
The approximation ratio of a cut is defined as the
cut cost divided by the cost of the optimal cut. As
shown in Fig. 1, F-VQE consistently achieves larger
approximation ratios after fewer optimization steps than
VQE and QAOA. Moreover, F-VQE readily runs on
actual quantum processors. The HE-ITE algorithm
achieves similar results with a reduced number of qubits
and gates.

This article is structured as follows. Section II
introduces filtering operators, QVF and F-VQE.
Section III presents the numerical and experimental
studies. We conclude this article and discuss potential
next steps in Section IV. Technical details are provided
in Appendices at the end of this article.

In another publication [26] we analyse the performance
of F-VQE in the context of the job shop scheduling
problem.

II. METHODS

In this Section, we first define filtering operators.
Then we explain the QVF and F-VQE algorithms. For
F-VQE we present a procedure that dynamically updates
τ during the optimization. Furthermore we address the
question which filtering operators can use causal cones in
F-VQE.
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Figure 2. Filtering operators used in this work. The value
of f(E; τ)/f(E0; τ) is plotted against the energy range E ∈
[E0, 1] for ground state energy E0 = 0.001. The value of τ
used in the figure is the first value τ1, selected at the first
optimization step, averaged across the 25 MaxCut instances
for 13 qubits. Values after ± indicate the standard deviation.
For the Chebyshev filter, the value used in the figure was
rounded to 5.

A. Filtering operators

Given a n-qubit Hamiltonian H, we define a filtering
operator F ≡ f(H; τ) via a real-valued function f(E; τ)
of the energy E and a parameter τ > 0. We require that
the function f2(E; τ) is strictly decreasing on the interval
given by the complete spectrum of the Hamiltonian
E ∈ [Emin, Emax]. Filtering operators are Hermitian and
commute with the Hamiltonian by definition.

When a quantum state |ψ〉 is sampled in the eigenbasis
{|λx〉 : x = 0, 1, . . . , 2n − 1} of a Hamiltonian,
then the probability distribution of eigenvectors is given
by Pψ(λx) = |〈ψ|λx〉|2. The application of the
filtering operator on the quantum state produces a new
quantum state |Fψ〉 = F |ψ〉 /

√
〈F 2〉ψ which generates a

probability distribution that depends on the energy Ex
of each eigenstate |λx〉:

PFψ(λx) =
f2(Ex; τ)

〈F 2〉ψ
Pψ(λx). (1)

For non-eigenstates |ψ〉 the action of the filtering
operator increases the probability of all overlapping
eigenstates |λx〉 (where Pψ(λx) > 0) for which
f2(Ex; τ) > 〈F 2〉ψ and decreases the probability of all
overlapping eigenstates |λy〉 for which f2(Ey; τ) < 〈F 2〉ψ.
Since f2(E; τ) is strictly decreasing as a function of
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E, such eigenstates exist for any non-eigenstate |ψ〉.
Hence, under the application of the filtering operator,
the probability of sampling eigenstates with low energy
increases and the probability of sampling eigenstates
with high energy decreases. This naturally leads to a
reduction of the average energy. In particular, if the
ground state |λ0〉 has a finite overlap (Pψ(λ0) > 0)
with the initial state, the probability of sampling it
increases with every application of the filtering operator.
After sufficiently many applications the ground state is
produced.

Some filtering function definitions are given in Fig. 2.
The Chebyshev filtering operator approximates the Dirac
delta operator δ(H) using the following expansion in
terms of Chebyshev polynomials up to order τ [27]:

δ(H) ≈f(H; τ) =

bτ/2c∑
r=0

(−1)r
2− δr,0
π

g
(τ)
2r T2r(H) (2)

g(τ)s =
(τ − s+ 1) cos πs

τ+1 + sin πs
τ+1 cot π

τ+1

τ + 1
. (3)

Here δr,s is the Kronecker delta and the Chebyshev
polynomials are defined via the recursive formula
Ts+1(x) = 2xTs(x)−Ts−1(x) with T0(x) = 1, T1(x) = x.

The parameter τ in the filtering operator definition is
inspired by the time step parameter of imaginary time
evolution. In fact, for the exponential filtering operator
in Fig. 2 τ is precisely the imaginary time step. This
parameter interpolates the action of the filtering operator
between two limits. For vanishing values of τ → 0 the
filtering operator becomes the identity operator and for
sufficiently large values of τ → ∞ the filtering operator
becomes a projector onto the ground state.

For our selection of filters we took inspiration from
several works. The inverse filter is inspired by the
inverse iteration procedure which is a common ingredient
in numerical routines that calculate eigenvalues and
eigenvectors of matrices [28–30]. The cosine filter was
previously used in non-variational algorithms to achieve
faster ground state preparation [31] and to analyze finite
energy intervals [32]. The Chebyshev filter considered
here was also employed in powerful tensor network
algorithms for the study of thermalization [33–35].

B. Quantum Variational Filtering (QVF)

The QVF algorithm approximates the repeated action
of a filtering operator on some initial quantum state by
successively optimizing the variational parameters of a
parameterized quantum circuit. The algorithm starts at
optimization step t = 0 by preparing an initial state |ψ0〉
that has finite overlap with the ground state: Pψ0

(λ0) >
0. Then the algorithm proceeds iteratively and in each
optimization step t ≥ 1 approximates the state |Ftψt−1〉
– that results from exactly applying the filtering operator
Ft to the state |ψt−1〉 – by a state |ψt〉. The subscript

t in Ft indicates that the filtering operator can change
at each optimization step. The algorithm stops after an
initially chosen number of optimization steps.

In order to approximate the application of the filtering
operator, we prepare a parameterized quantum circuit
ansatz |ψ(θ)〉 that depends on a vector of m parameters
θ = (θ1, . . . , θm). At optimization step t we search
for the parameters that minimize the Euclidean distance
between the parameterized quantum state and |Ftψt−1〉:

Ct(θ) =
1

2
‖ |ψ(θ)〉 − |Ftψt−1〉 ‖2

= 1− Re 〈ψt−1|Ft |ψ(θ)〉√
〈F 2
t 〉ψt−1

.
(4)

The final vector of parameters obtained at the end
of the minimization of Eq. (4) defines the quantum
state |ψt〉 ≡ |ψ(θt)〉 at optimization step t. The cost
function in Eq. (4) can be minimized with the help of
the Hadamard test, which needs one additional ancilla
qubit and several additional controlled operations, as we
explain in Appendix A.

C. Filtering VQE (F-VQE)

To avoid the additional quantum resources required
by the Hadamard test in QVF, in the following we
develop F-VQE. The F-VQE algorithm uses a specific
gradient-based procedure that requires essentially the
same circuits as VQE.

The partial derivative of the cost function in Eq. (4)
with respect to one parameter θj is derived in
Appendix B 1:

∂Ct(θ)

∂θj
= −Re 〈ψt−1|Ft |ψ(θ + πej)〉

2
√
〈F 2
t 〉ψt−1

. (5)

Here the state |ψ(θ + πej)〉 is produced by the same
ansatz circuit except that the vector of angles is shifted
by an amount π along the direction ej of parameter
θj . If the gradient is evaluated at the current vector of
parameters θt−1, then the parameter-shift rule [36, 37]
yields:

∂Ct(θ)

∂θj

∣∣∣∣
θt−1

= −
〈Ft〉ψj+

t−1
− 〈Ft〉ψj−

t−1

4
√
〈F 2
t 〉ψt−1

. (6)

Here the three circuits |ψt−1〉 and
∣∣∣ψj±t−1〉 ≡∣∣ψ(θt−1 ± π

2 ej)
〉

are generated by the ansatz with
different parameter vectors. Note that the expectation
value in the denominator is the same for all partial
derivatives at fixed t.

The F-VQE algorithm takes advantage of this
favorable case as follows. At optimization step t, F-VQE
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performs a single gradient-descent update:

θt = θt−1 − η
m∑
j=1

∂Ct(θ)

∂θj

∣∣∣∣
θt−1

ej , (7)

where η > 0 is the learning rate. Then F-VQE moves
on to the next cost function Ct+1(θ) and proceeds
identically. For each optimization step this algorithm
requires the evaluation of 2m+ 1 circuits.

The expectation value 〈Ft〉ψ of filtering operators can
be efficiently evaluated by sampling the quantum state
in the Hamiltonian eigenbasis. If each eigenstate |λx〉 is
sampledMx times from a total ofM samples, the filtering
operator expectation value can be approximated via the
Monte Carlo estimator f(E; τ) as:

〈Ft〉ψ ≈
1

M

∑
x

Mxf(Ex; τ). (8)

In this article, we represent combinatorial optimization
problems by diagonal QUBO (Quadratic Unconstrained
Binary Optimization) Hamiltonians [8–10] for which the
eigenbasis is the computational basis and energies can be
efficiently computed. Therefore the expectation value of
a filtering operator can be approximated by sampling the
quantum state in the computational basis.

At each optimization step t the samples used to
compute 〈F 2

t 〉ψt−1
in Eq. (6) are also used to compute

the average energy 〈H〉ψt−1
. As t increases, the average

energy is expected to decrease and the probability of
sampling the ground state is expected to increase. Thus
F-VQE provides the average energy and a growing chance
of sampling a low energy eigenstate or even the ground
state at no extra cost during the optimization.

The gradient in F-VQE is equivalent to the one in VQE
under certain assumptions. We derive the VQE gradient
in Appendix B 2. If the Hamiltonian in the VQE gradient
of Eq. (B7) is replaced by −Ft, the new VQE gradient
evaluated at the point |ψ(θ)〉 = |ψt−1〉 coincides with the
F-VQE gradient in Eq. (6) up to a positive multiplicative
factor. However, we emphasize that the corresponding
VQE cost function −〈ψ(θ)|Ft |ψ(θ)〉 is different from the
F-VQE cost function in Eq. (4) where the dependence
on the parameters is of the form −Re 〈ψt−1|Ft |ψ(θ)〉.
We note that the F-VQE gradient in Eq. (5), in general,
coincides only at the point |ψ(θ)〉 = |ψt−1〉 with the
gradient of the modified VQE cost function. We can also
see in Eqs. (B6) and (B8) that the second derivatives
do not coincide, not even at that point |ψ(θ)〉 = |ψt−1〉.
Therefore both algorithms explore parameter landscapes
with different curvatures.

D. Adapting τ

Both the cost function in Eq. (4) and its gradient in
Eq. (6) depend on the parameter τ via the expectation
value of the filtering operator in Eq. (8). We dynamically

Figure 3. Gradients as a function of the parameter τ . For one
13-qubit MaxCut problem we plot the gradient norm (blue
continuous) and the absolute value of partial derivatives in
Eq. (6) with respect to four parameters in the ansatz circuit
shown in Fig. 4(a). Partial derivatives correspond to the first
parameter on qubit 1 (green dashed), the last parameter on
qubit 1 (magenta dotted), the first parameter on qubit 13
(yellow continuous), and the last parameter on qubit 13 (red
dashed-dotted). The value of τt selected at these optimization
steps is marked with a gray vertical line.

adapt τ to keep the gradient norm as close as possible to
some desired large and fixed value at every optimization
step. This can prevent the gradient from vanishing and
enable us to determine its value more accurately with a
fixed number of measurements.

In F-VQE we employ the following heuristic to
dynamically adapt τ . At each optimization step the
dependence g(τ) ≡ ‖∇ Ct(τ)|θt−1

‖ between the gradient

norm and τ is used to select the value τt that returns
a gradient norm as close as possible below a certain
threshold gc > 0. For each optimization step such
value τt is obtained by solving the implicit equation
g(τt) = gc. Note that g(0) = 0 since for τ = 0 the
filtering operator becomes the identity operator and the
gradient norm vanishes. For large values of τ the gradient
norm saturates at a finite value that is determined by the
overlap of the gradient circuits with the ground state.
Taking this into account, we select τt in the following
way. We evaluate the gradient norm for increasing values
of τ until either (i) an upper bound τu > τt is found such
that g(τu) > gc or (ii) g(τ) converges to a constant. In
the first case (i) we search for τt in the range [0, τu] up to
a certain precision. In the second case (ii) we select from
the tried values the one that provided a gradient norm
closest below the threshold. Note that for the Chebyshev
filtering operator only positive integer values of τ are
allowed.

We emphasize that our heuristic is different from a
simple re-scaling of the gradient by a constant. As shown
in Fig. 3 each partial derivative changes non-trivially as
a function of τ . Moreover, in the simulations we observe
that the gradient norm has a consistent dependence on
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τ across different optimization steps and problems.

E. Causal cones

The F-VQE algorithm is based on expectation value
computations of filtering operators and it is natural
to ask whether this method can benefit from using
causal cones. The causal cone of an observable is the
quantum circuit composed of only those qubits and gates
in the ansatz circuit that have an actual effect on the
expectation value. In general, causal cones allow us to
simplify the computation of expectation values for local
observables. The simplification follows from the fact
that outside the causal cone of a local operator unitary
gates cancel with their adjoints. Causal cones are a
crucial ingredient in various tensor network methods, e.g.
based on the multiscale entanglement renormalization
ansatz [38]. We have previously used them to make
variational quantum algorithms more hardware-efficient
for the simulation of the time evolution of quantum
many-body systems [23].

Figures 4(b) and (c) show the causal cones for
observables with support on two neighboring qubits
and two non-neighboring qubits, respectively. Only the
qubits and gates inside the causal cone need to be
prepared experimentally. Note that for observables with
support on distant qubits, the causal cone splits into
two separable causal cones that can be independently
realized in hardware. Therefore causal cones can reduce
the required number of gates and qubits when the
observables have small support.

Inspecting the filtering operators in Fig. 2, we see that
the exponential, power, and Chebyshev filters can make
use of causal cones. The exponential filter exp(−τH)
is equivalent to a product of 2-local terms that can be
processed independently if additional approximations are
made [23]. The power filter (1 − H)τ for integer values
of τ is equivalent to a sum of at most 2τ -local terms
so that the entire expectation value can be determined
from the sum of simpler expectation values. Similarly
the expectation value of the Chebyshev filter can be
calculated using the sum of expectation values of at most
2τ -local observables, as the Chebyshev filtering operator
is a polynomial in H of degree τ .

III. RESULTS

In this Section, we describe the MaxCut Hamiltonians,
parameterized quantum circuits, as well as the simulation
and experimental settings that are being considered in
this article. The settings are summarized in Tab. I.
Then we analyze the performance of the algorithms.
Simulations and the experiment on the Honeywell H1
trapped-ion quantum processor [39] are compiled by
TKET [40].

A. Weighted MaxCut Hamiltonians

We use 25 random MaxCut instances for each problem
size of n ∈ {5, 7, 9, 11, 13, 23} qubits. These problem
sizes n correspond to graphs with N = n + 1 vertices.
Each instance is defined on a random 3-regular weighted
simple undirected and connected graph G(V, E ,W) where
V = {1, 2, . . . , N} is the set of vertices, E ⊂ V × V
is the set of edges between different vertices, and
W = {we ∈ [0, 1] : e ∈ E} is the set of random
weights uniformly distributed in the range [0, 1] for all
edges. A cut is represented by variables zv = {+1,−1},
with v ∈ V, that are +1 for the vertices in one
subset of the cut and −1 for the vertices in the
other subset of the cut. This formulation has the
obvious symmetry of swapping labels +1, −1 for the
two subsets. We break this symmetry by assigning
+1 to the last vertex v = N and thereby reduce the
number of variables to n = N − 1. Then the MaxCut
problem consists in solving the optimization problem
(z∗1 , z

∗
2 , . . . , z

∗
n) = argmax(z1,z2,...,zn) C(z1, z2, . . . , zn),

with cost function

C(z1, z2, . . . , zn) =
∑

e={u,N}∈E

we
1− zu

2

+
∑

e={u,v 6=N}∈E

we
1− zuzv

2
.

(9)

The Hamiltonian formulation of the MaxCut problem
is obtained via any real coefficients a and b > 0 as

H = a1− bC(Z1, Z2, . . . , Zn), (10)

where each variable zu in the MaxCut cost function
is replaced by the Pauli operator Zu acting on qubit
u ∈ {1, . . . , n}. A ground state of H in Eq. (10) is
the computational state |λ0〉 =

⊗n
v=1 |(1− z∗v)/2〉. The

approximation ratio of a n-qubit quantum state |ψ〉 is
defined as

〈α〉ψ =
〈C(Z1, Z2, . . . , Zn)〉ψ

max(z1,z2,...,zn) C(z1, z2, . . . , zn)
. (11)

Before we apply filtering operators to MaxCut
Hamiltonians, we re-scale the energy range to [0, 1] using
the coefficients a and b in Eq. (10). To achieve this, we
compute lower and upper bounds of the MaxCut cost
function in Eq. (9). We choose the upper bound to be
the optimum cost of the semidefinite programming (SDP)
relaxation of the MaxCut problem [41]. We fix the lower
bound to the minimum cost 0, which corresponds to the
trivial cut zu = +1 for all u ∈ {1, . . . , n}.

B. Setup

F-VQE. This algorithm uses the parameterized
quantum circuit shown in Fig. 4(a). An initial state
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(a) algorithm F-VQE HE-ITE VQE QAOA
cost function Eq. (4) [23] 〈H〉ψ(θ) 〈H〉ψ(γ,β)

ansatz circuit Fig. 4(a) Fig. 4(a) Fig. 4(a) Eq. (12)

initial param. |+〉⊗n |+〉⊗n |+〉⊗n random
adaptive τ yes, gc = 0.1 no, fix 1.0 - -
learning rate η inv. Hess. d. - 1.0 1.0
opt. steps 70 70 70 70

(b) size n (qubits) 5 7 9 11 13 23
algorithms all all all all all HE-ITE
layers p in HE-ITE 1 1 1 1 1 1
layers p in all except HE-ITE 2 3 4 5 6 -
measurement shots M 10 50 100 150 200 2ncone+2

(c) 9-qubit experiment on Honeywell H1
layers p 1
ansatz circuit Fig. 9(b)
adaptive τ yes, gc = 0.2
measurement shots M 500
optimization steps 9

Table I. Simulation and experimental settings. (a) The cost
function for VQE and QAOA is the average energy for their
respective ansatz circuits |ψ(θ)〉 and |ψ(γ,β)〉. The learning
rate for F-VQE is the inverse of the cost function’s Hessian
diagonal. (b) For the 23-qubit problems HE-ITE uses 2ncone+2

measurement shots for each causal cone, where ncone is the
number of qubits in the causal cone. (c) Different settings
for the 9-qubit experiment. In the ansatz circuit all rotation
gates except the first and the last ones on each qubit are
removed. Additional details corresponding to the experiment
are provided in Appendix C.

|ψ0〉 = |+〉⊗n is prepared by setting to π/2 the
parameters in the last rotation on each qubit and
setting the remaining parameters to 0. Parameters are
iteratively updated using analytical gradient descent as
described in Section II C. At each optimization step,
the value of the parameter τ is adapted according to
the procedure explained in Section II D. We choose a
threshold of gc = 0.1 for the gradient norm and solve the
implicit equation with a precision 0 < gc − g(τt) < 0.01.
For the learning rate η we choose the inverse of the
Hessian’s diagonal. As shown in Appendix B 1, at each
optimization step t all diagonal elements of the Hessian
have the same value which can be computed by means of
the circuit |ψt−1〉. This is a quasi-Newton method [42, 43]
that uses only the diagonal of the Hessian matrix and can
be realized without additional cost.

HE-ITE. In relation to using causal cones with F-VQE,
we have chosen to concentrate our analysis on the
exponential filter. In this case the F-VQE method is
equivalent to the HE-ITE algorithm called Angle Update
in [23]. We adapt this algorithm to the general QUBO
Hamiltonians with long-range interactions considered
here. We use the ansatz circuit depicted in Fig. 4(a)
with p = 1 layer. Figures 4(b) and (c) show examples of
causal cones in HE-ITE. A total of 70 time steps are
performed with a fixed imaginary time step τ = 1.0.
For the 23-qubit problems, we choose the number of

Figure 4. Parameterized quantum circuit defined by a vector
θ = (θ1, . . . , θm) of m parameters, here for m = 19. (a)
For a number p of circuit layers the block of gates inside
the dashed rectangle is repeated p times. Here we show the
circuit for p = 1. The F-VQE algorithm samples the entire
circuit to evaluate a global observable indicated by the blue
rectangle. (b)-(c) Highlighted qubits and gates constitute the
causal cone that HE-ITE uses to evaluate 2-local observables
on two neighboring qubits and two non-neighboring qubits,
respectively.

measurement shots dependent on the number ncone of
qubits in the cone as 2ncone+2.

VQE. For this algorithm we employ the same ansatz
as in F-VQE and HE-ITE, shown in Fig. 4(a). The
computation of the analytical gradient for this ansatz
requires two quantum circuits per parameter as described
in Appendix B 2. For the VQE cost function the
diagonal of the Hessian can be obtained using the same
circuits that are needed for the analytical gradient,
similar to F-VQE. Thus it is possible to apply the
same quasi-Newton method to the VQE optimization.
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Figure 5. Simulation results for 25 random weighted MaxCut problems of various sizes. (a) Average approximation ratio
(circles) and standard deviation (error bars). Note the different range for QAOA. (b) Optimization steps: median (lines) and
all instances (dots). The number of instances that achieve an approximation ratio of 0.75 is 25 for all algorithms and problem
sizes except for QAOA. For QAOA these numbers are 17, 22, 21, 9, and 3 for n = 5, 7, 9, 11, and 13, respectively. (c) Fraction
of instances that achieve a probability of measuring the ground state above 0.25.

However, we found that this heuristic performs worse
than simply fixing a learning rate for all optimization
steps and partial derivatives. More specifically, in
the simulations we found that the Hessian diagonal
elements frequently vanish so that the parameter update
often diverges with this heuristic. The analysis of this
phenomenon goes beyond the scope of this work and
therefore we choose to fix a learning rate η for all
optimization steps and partial derivatives. Comparing
the performance of the values η = 1, 0.1 and 0.01 using
our 5-qubit MaxCut instances, we conclude that η = 1
performs best and hence use this fixed value for η in our
simulations and experiments.

QAOA. The parameterized quantum circuit for QAOA
is:

|ψ(γ,β)〉 = U(γp, βp) · · ·U(γ1, β1) |+〉⊗n , (12)

U(γj , βj) = exp

(
−iγj

n∑
q=1

Xq

)
exp (−iβjH) . (13)

Here |+〉 = (1/
√

2)(|0〉 + |1〉), Xq denotes the Pauli
operator X acting on qubit q, and the ansatz is
defined by the m = 2p parameters in the vectors
γ = (γ1, . . . , γp) and β = (β1, . . . , βp). We initialize the
parameters randomly in the range [0, π]. We optimize
the parameters using analytical gradient descent. As
shown in Appendix B 3, the computation of the analytical
gradient for the QAOA ansatz requires just the ansatz
circuit with various parameter sets. In the QAOA

simulations we do not use the quasi-Newton method
to determine the learning rate, as this would need
additional circuits. Instead we fix a learning rate η for
all optimization steps and partial derivatives. We choose
η = 1 as it is the best performing learning rate for
the 5-qubit MaxCut instances where we compared the
performance of η = 1, 0.1, and 0.01.

C. Performance

In the following, we present and analyze the numerical
and experimental results of the F-VQE algorithms and
compare them with those of HE-ITE, VQE and QAOA.
For each MaxCut instance we pay special attention to
two benchmark quantities: the approximation ratio and
the probability of measuring the ground state. These
quantities have some dependence. A large probability
of sampling the ground state Pψ(λ0) ≈ 1 implies a large
approximation ratio 〈α〉ψ ≈ 1. However, a quantum state
|ψ〉 given by a superposition of low-energy excited states
can exhibit a large approximation ratio 〈α〉ψ ≈ 1 but low
ground state probability Pψ(λ0) ≈ 0.

We compare the performance of various filtering
operators in F-VQE in Fig. 5. Here filtering operators
are sorted from left to right by performance and the
inverse filter is the best performing one. Figure 5(a)
shows for each algorithm considered in this article
the final approximation ratio averaged over all 25
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Figure 6. Simulation results for the HE-ITE algorithm
applied to 25 random weighted MaxCut problems of various
sizes using different imaginary time steps τ and total
imaginary time 100. (a) Approximation ratio: average
(circles) and standard deviation (error bars). (b) Fraction of
instances that achieve a probability of measuring the ground
state above 0.25.

MaxCut instances for each problem size. We observe
that the best performing filters achieve the largest
approximation ratios and are more reliable in obtaining
such approximation ratios, which can be gathered
from the small values of the corresponding standard
deviations. Figure 5(b) shows the distribution of the
minimum number of optimization steps required to
achieve an approximation ratio above 0.75. Here all
filters show a similar performance: they require 5 or
fewer optimization steps with little deviation from the
median. Figure 5(c) shows the fraction of MaxCut
instances where the algorithms obtain a probability of
sampling the ground state above 0.25. The probability
of sampling it at least once with M measurement shots
is then 1 − (1 − 0.25)M . The best filters achieve this
probability for a larger fraction of MaxCut instances.

Let us now compare the best performing filtering
operator, the inverse filter, with VQE and QAOA.
F-VQE requires less optimization steps than VQE
and QAOA to achieve larger and more consistent
approximation ratios. This can be seen in Figs. 5(a) and
(b) as well as in Fig. 1(a). Additionally, as shown in
Fig. 5(c), F-VQE converges to the ground state more
often for all problem sizes.

The HE-ITE algorithm also achieves approximation
ratios close to the optimum and frequently converges
to the ground state. Moreover, the evolution of the
approximation ratio shown in Fig. 1(a) almost overlaps
with that for F-VQE. Similarly Fig. 1(b) shows that
HE-ITE obtains an average approximation ratio close
to the optimum for 25 MaxCut instances of 23 qubits.
Importantly, the quantum circuits never use more than
six qubits. The inset in Fig. 1(b) shows the average
fraction of circuits used for each qubit count. We observe

0 1 2 3 4 5 6 7 8 9
optimization steps

0.0

0.2

0.4

0.6

0.8

1.0
9-qubit experiment

F-VQE

approximation ratio

ground state
 probability

Figure 7. Approximation ratio and probability of sampling
the ground state for a single random weighted MaxCut
instance solved on the Honeywell H1 trapped-ion quantum
processor [39]. Error bars indicate one standard deviation.
Details are provided in Appendix C.

that the majority of circuits require just four qubits.
The performance of HE-ITE depends on the imaginary

time step τ and to analyze it we have run HE-ITE for
a long total imaginary time of 100. Figure 6 compares
for three values of τ the final approximation ratios and
the fraction of MaxCut instances where a probability
of sampling the ground state above 0.25 is achieved.
We conclude that HE-ITE improves systematically by
choosing smaller values of τ .

To demonstrate the experimental feasibility, we run
F-VQE with the inverse filter on the Honeywell H1
trapped-ion quantum processor and solve a random
9-qubit MaxCut instance. Experimental settings (see
Table I(c)) are similar to those used for the numerical
simulations, with some differences described in detail in
Appendix C. The main difference is that we use only
p = 1 layer and remove all rotation gates except the first
and the last ones for each qubit. Figure 7 shows the
approximation ratio and the probability of measuring
the ground state at each optimization step. The final
approximation ratio is 0.9844±0.0062 and the probability
of sampling the ground state after the final optimization
step is 0.928± 0.024. Here the value after ± indicates a
95% confidence interval.

IV. CONCLUSIONS AND OUTLOOK

We have introduced variational quantum algorithms
that make use of filtering operators to solve combinatorial
optimization problems. The Quantum Variational
Filtering (QVF) algorithm uses a parameterized
quantum circuit to approximate the repeated action
of a filtering operator. Filtering VQE (F-VQE) is
a particularly efficient version of QVF and similar
to VQE. These algorithms impose no restrictions on
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the ansatz circuit so that we can choose the one
that performs optimally on hardware. We have also
tested a hardware-efficient imaginary time evolution
(HE-ITE) algorithm introduced in [23]. This algorithm
approximates the action of the imaginary time evolution
operator. Using causal cones, HE-ITE can require
circuits that are significantly smaller than the problem
size.

We have compared F-VQE and HE-ITE with VQE and
QAOA using a set of random weighted MaxCut problems
of various sizes. The F-VQE algorithm achieved larger
and more consistent approximation ratios as well as more
reliable convergence to the optimal solutions than VQE
and QAOA via fewer optimization steps. The HE-ITE
algorithm obtained similar approximation ratios and
ground state convergence with drastically reduced qubit
count. Moreover, F-VQE successfully solved a 9-qubit
MaxCut problem on the Honeywell H1 trapped-ion
quantum processor [39]. We conclude that F-VQE and
HE-ITE are powerful algorithms to solve combinatorial
optimization problems on noisy quantum computers.

Owing to the high flexibility of F-VQE, various
promising strategies can be considered to further improve
the performance. F-VQE can readily be combined
with the Conditional Value-at-Risk cost function [16, 44,
45] to provide new filtering operators with additional
capabilities. Local cost functions and shallow ansatz
circuits can be used to avoid barren plateaus [46].
F-VQE might also benefit from the original QAOA
ansatz [12] or generalizations thereof such as the
Hamiltonian variational ansatz [47, 48], the quantum
alternating operator ansatz [49], the hardware-efficient
mixer-phaser ansatz [50] or the depth optimized QAOA
ansatz [51]. The ansatz can be specifically selected to
minimize experimental noise on quantum hardware [52].
To this end, the quantum autoencoder is a powerful
concept [53, 54]. It is enticing to combine F-VQE with
the holographic ansatz [55] that has led to impressive
results on the Honeywell quantum computer [56, 57].
Any ansatz can be enhanced by extending it with
classical neural networks [58]. The classical optimizer
for the parameters can simultaneously adjust the ansatz
circuit structure to alleviate the effects of experimental
noise [59, 60]. It might also be beneficial to grow the
ansatz during the optimization as in ADAPT-VQE [61],
Adapt-QAOA [62], layerwise learning [63] or Layer
VQE [64]. Advanced gradient-descent techniques like
stochastic gradient descent may reduce the number of
optimization steps and avoid local minima [65]. Finally,
different heuristic adaptations of the parameter τ and the
learning rate can be explored to gain more information
from circuit samples.

An interesting future application for QVF and
F-VQE is the computation of states different from the
ground state. Our filtering algorithms can target any
state of energy Etarget, e.g. a specific excited state,
simply by using the slightly modified filtering operator
f(|H − Etarget|; τ).

Another interesting application for QVF and F-VQE
is the optimization based on black-box cost functions.
Our filtering algorithms (as well as VQE) can optimize
a variational ansatz given any black-box cost function
Hblack-box(x) that takes as input a bitstring of binary
variables x and returns the associated cost function
value. Therefore it is not necessary to represent
the problem in terms of a QUBO Hamiltonian. A
different problem representation might, e.g., reduce the
required qubit count. We note that one of the first
successful approaches for the optimization corresponding
to such black-box cost functions is based on simulated
annealing [66] which made it possible to tackle real-world
problems that could not be tackled before [67]. An
interesting future project is the comparison of our
filtering algorithms with simulated annealing.

It is exciting to think about using filtering operators
for the computation of ground states of quantum
Hamiltonians. This can be achieved with some filtering
operators. For example, the imaginary time evolution
filter is often used in combination with quantum
Hamiltonians, for details see [23] and references therein.
Using the circuits described in this article, it is also
straightforward to realize the power and Chebyshev
filters for integer values of τ in QVF as well as F-VQE.
With respect to the inverse filter – the best performing
filtering operator of this work – there exists a proposal
to realize it with quantum Hamiltonians by means of a
Fourier approximation [68]. With the help of the Fourier
transform, also other filtering operators can be applied
to quantum Hamiltonians [69].

The insights gained here are also useful for the
design of new quantum-inspired classical algorithms that
can obtain significant speedups compared to traditional
classical methods [70–72]. Here one interesting question
is whether tensor network methods for ground state
minimization can benefit from the use of filtering
operators. Faster and more accurate ground state
algorithms are crucial, e.g., for the construction
of systematically improved functionals for density
functional theory [73], or to further improve fast solvers
for the boundary value problem of general nonlinear
partial differential equations [74]. Such algorithms
can also give us new answers to traditional tensor
network questions regarding quantum phases and phase
transitions in strongly correlated quantum systems [75,
76].

V. ACKNOWLEDGMENTS

We thank Brian Neyenhuis and all the Honeywell
Quantum Solutions team for their availability and
support with the H1 device. We acknowledge the cloud
computing resources received from the ‘Microsoft for
Startups’ program. We also thank Seyon Sivarajah, Alec
Edginton, Richie Yeung, Ross Duncan, and all the TKET
development team for their technical support.



10

Appendix A: Hadamard test for QVF

In this Appendix we describe how to minimize the
QVF cost function in Eq. (4) with the help of a Hadamard
test.

Evaluating the cost function in Eq. (4) requires
computing a quantity of the form 〈ψ(φ)|Ft |ψ(θ)〉, where
|ψ(θ)〉 and |ψ(φ)〉 are n-qubit quantum ansatz circuits
shown in Fig. 4(a) with parameter vectors θ and φ.
The computation of such a quantity is also needed
for the gradient calculation in Eq. (5). This quantity
can be computed with a Hadamard test by evaluating
the expectation value of the diagonal and Hermitian
observable Zanc ⊗ Ft with the specific circuit W (θ,φ)
in Fig. 8 – composed of one ancilla qubit labeled by anc
and a n-qubit register – that implements the following
operation:

W (θ,φ) |0〉anc |0〉 =
1

2
|0〉anc (|ψ(θ)〉+ |ψ(φ)〉) +

1

2
|1〉anc (|ψ(θ)〉 − |ψ(φ)〉). (A1)

Appendix B: Analytical derivatives

In this Appendix we derive the analytical gradient
in Eq. (5) and the diagonal elements of the Hessian
matrix for the cost function in Eq. (4) corresponding
to the QVF algorithm. We use the parameter-shift
rule [36, 37] to derive the analytical gradient in Eq. (6)
for the F-VQE algorithm. This procedure is also used to
derive analytical gradients for VQE and QAOA.

1. QVF and F-VQE

In the quantum ansatz circuits |ψ(θ)〉 of Fig. 4(a)
parameters θ = (θ1, θ2, . . . , θm) are present only in
rotation gates of the form RG(θj) = exp(−iθjG/2),
where G is a single-qubit Pauli operator or a tensor
product of Pauli operators. As a function of a
single parameter, the circuit can be expressed in terms
of two fixed unitaries VA, VB and the rotation gate
corresponding to the parameter:

|ψ(θj)〉 = VARG(θj)VB |0〉 , (B1)

where |0〉 = |0〉⊗n is the initial register state. Hence the
first and second derivatives with respect to a parameter
θj are:

∂ |ψ(θj)〉
∂θj

=
1

2
VARG(θj)(−iG)VB |0〉 =

1

2
|ψ(θj + π)〉

(B2)

∂2 |ψ(θj)〉
∂θ2j

=
1

4
VARG(θj)(−iG)2VB |0〉 = −1

4
|ψ(θj)〉 ,

(B3)

where we have used that −iG = RG(π).
Then the first and second derivatives of the cost

function in Eq. (4) are:

∂Ct(θ)

∂θj
= −Re 〈ψt−1|Ft |ψ(θ + πej)〉

2
√
〈F 2
t 〉ψt−1

, (B4)

∂2Ct(θ)

∂θ2j
=

Re 〈ψt−1|Ft |ψ(θ)〉

4
√
〈F 2
t 〉ψt−1

. (B5)

The first equation corresponds to Eq. (5). Since the
filtering operator Ft is Hermitian, when the first equation
is evaluated for the vector of parameters θt−1 that
produces the state |ψt−1〉 = |ψ(θt−1)〉 we can use the
parameter-shift rule to express the numerator as a sum
of two circuits, which leads to Eq. (6). When the second
equation is evaluated for θt−1, it results in:

∂2Ct(θ)

∂θ2j

∣∣∣∣∣
θt−1

=
〈Ft〉ψt−1

4
√
〈F 2
t 〉ψt−1

, (B6)

which requires only the quantum circuit for |ψt−1〉.

2. VQE

The cost function is the average energy 〈H〉ψ(θ) and
the ansatz circuit |ψ(θ)〉 is the same as the one employed
by F-VQE shown in Fig. 4(a). Given that each parameter
is present in only one rotation gate, the parameter-shift
rule can be applied to express the analytical gradient as:

∂〈H〉ψ(θ)
∂θj

∣∣∣∣
θt−1

=
1

2

(
〈H〉ψj+

t−1
− 〈H〉ψj−

t−1

)
. (B7)

As with F-VQE, the circuits
∣∣∣ψj±t−1〉 ≡ ∣∣ψ (θt−1 ± π

2 ej
)〉

are implemented by shifting the parameter θj by an
amount ±π/2.

Using the same methods, the second derivative with
respect to each parameter can be evaluated as

∂2〈H〉ψ(θ)
∂θ2j

∣∣∣∣∣
θt−1

=
1

2
〈H〉ψj++

t−1
− 1

2
〈H〉ψt−1 , (B8)

where |ψt−1〉 = |ψ(θt−1)〉 is the state with no shifts, and∣∣∣ψj++
t−1

〉
= |ψ(θt−1 + πej)〉 is the state with a +π shift.

3. QAOA

The QAOA ansatz in Eq. (12) is not of the previous
form: here parameters multiply sums of tensor products
of Pauli operators so that the partial derivatives become
sums of circuit evaluations. Given a Hamiltonian
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Figure 8. Hadamard test circuit to compute Re 〈ψ(φ)|Ft |ψ(θ)〉 for the parameterized quantum circuit in Fig. 4(a). The H
gates acting on the ancilla qubit at the top are Hadamard gates. For an ansatz of p layers the block of gates inside the dashed
rectangle is applied p times. This figure shows p = 1 layer. The parameter vectors satisfy θ′ = φ− θ.

H =
∑K
k=1 hkZQk

with real coefficients hk and
ZQk

=
⊗

q∈Qk
Zq, the ansatz derivatives are:

∂ |ψ(γ,β)〉
∂γj

=

n∑
q=1

Ũ(j,p)(−iXq)Ũ(1,j−1) |+〉
⊗n

, (B9)

∂ |ψ(γ,β)〉
∂βj

=

K∑
k=1

hkŨ(j+1,p)(−iZQk
)Ũ(1,j) |+〉

⊗n
.

(B10)

Here Ũa,b = U(γb,βb) · · ·U(γa+1,βa+1)U(γa,βa), where
U(γj ,βj) is defined in Eq. (13), contains all QAOA
circuit layers from a to b. Therefore the partial
derivatives of the QAOA cost function are:

∂〈H〉ψ(γ,β)

∂γj
= 2 Re 〈ψ(γ,β)|H∂ |ψ(γ,β)〉

∂γj
, (B11)

∂〈H〉ψ(γ,β)

∂βj
= 2 Re 〈ψ(γ,β)|H∂ |ψ(γ,β)〉

∂βj
. (B12)

If the parameter-shift rule is applied to every term
individually, we obtain the analytical gradient for the
QAOA ansatz in terms of ansatz circuits for various
parameter sets:

∂〈H〉ψ(γ,β)

∂γj
=

n∑
q=1

(
〈H〉

ψ
(j,q)+
X

− 〈H〉
ψ

(j,q)−
X

)
, (B13)

∂〈H〉ψ(γ,β)

∂βj
=

K∑
k=1

hk

(
〈H〉

ψ
(j,k)+
H

− 〈H〉
ψ

(j,k)−
H

)
. (B14)

The evaluation of all gradient components requires the
following 2p(n+K) circuits that are defined by inserting
a rotation gate in the ansatz circuit:∣∣∣ψ(j,q)±

X

〉
= Ũ(j,p)RXq

(
±π

2

)
Ũ(1,j−1) |+〉

⊗n
, (B15)∣∣∣ψ(j,k)±

H

〉
= Ũ(j+1,p)RZQk

(
±π

2

)
Ũ(1,j) |+〉

⊗n
. (B16)

Appendix C: Experimental details

This Appendix provides further details on the 9-qubit
experimental results, shown in Fig. 7, obtained with the
Honeywell H1 trapped-ion quantum processor solving a
MaxCut problem.

The considered MaxCut problem is defined on
the 10-node 3-regular weighted graph depicted in
Fig. 9(a). The corresponding MaxCut weights are
given in Tab. II. The solution divides the nodes into
the two sets of black and white nodes shown in
Fig. 9(a), equivalent to the 10-variable solution vector
(1,−1,−1, 1, 1,−1, 1,−1,−1,−1) which corresponds to
the 9-qubit solution computational state |011001011〉 in
our experiment, as explained in Section III A.

Figure 9(b) shows the parameterized quantum circuit
that is used in the experiment. This circuit is simpler
than the ones that are used for the simulations –
cf. Fig. 4(a) – as it contains just p = 1 layer with
two single-qubit rotation gates per qubit, one at the
beginning and one at end of the circuit.

Before the circuit of Fig. 9(b) is run on the Honeywell
H1 processor, it is compiled into the circuit shown
in Fig. 9(c) which is composed of the native gates
of the processor. There are three native gates [39]:
the standard single-qubit rotation gate around the Z
axis, a single-qubit rotation gate around an axis in the
X-Y plane PX(θ, φ) = Rz(φ)Rx(θ)Rz(−φ), and the
two-qubit interaction gate Uzz = exp(−iπZ ⊗ Z/4). The
compilation of the original two-qubit gates in Fig. 9(b)
changes the rotation angles of the single-qubit gates to

f±j = 2atan2

(
− cos

θj
2
± sin

θj
2
, cos

θj
2
± sin

θj
2

)
.

(C1)
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Figure 9. Experimental details relating to Fig. 7. (a) 10-node 3-regular weighted graph for the MaxCut problem with weights
given in Tab. II. The corresponding solution is the division into black and white nodes. (b) Parameterized quantum circuit
employed by F-VQE and (c) its compiled counterpart expressed in terms of Honeywell H1 native gates.

edge weight
(1, 2) 0.0609
(1, 8) 0.1574
(1, 9) 0.1392
(2, 5) 0.6131
(2, 10) 0.2670

edge weight
(3, 5) 0.4156
(3, 7) 0.2020
(3, 8) 0.0120
(4, 8) 0.6738
(4, 9) 0.5296

edge weight
(4, 10) 0.9927
(5, 6) 0.2617
(6, 7) 0.7781
(6, 10) 0.0202
(7, 9) 0.3973

Table II. MaxCut weights for the MaxCut problem
considered in our experiment based on the graph in Fig. 9(a).
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[32] S. Lu, M. C. Bañuls, and J. I. Cirac, Algorithms
for quantum simulation at finite energies (2020),
arXiv:2006.03032 [quant-ph].

[33] Y. Yang, S. Iblisdir, J. I. Cirac, and M. C. Bañuls,
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