Skip to main content
Log in

Long-Term Effects of Fire on Vegetation Structure and Predicted Fire Behavior in Wyoming Big Sagebrush Ecosystems

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Fire historically occurred across the sagebrush steppe, but little is known about how patterns of post-fire fuel accumulation influence future fire in Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis) communities. To quantify change in fuel composition and structure in intact sagebrush ecosystems, we sampled 17 years following prescribed fire in eight approximately 400 ha plots (4 burned, 4 unburned control) at Hart Mountain National Antelope Refuge, OR, USA. Fuels data were used to model potential fire behavior in burn and control plots across four environmental scenarios that mimic drying of fuels through the fire season. Seventeen years after fire total fuel loads were 7 × higher in controls (6015 kg ha−1) than burned plots (831 kg ha−1; P < 0.01). Herbaceous fuels were 5 times greater in burns (P < 0. 01). Shrub fuel was nearly 10 times higher in unburned plots (P < 0.01), and litter under shrubs in controls was 3.75 times greater than in burns (P < 0.01). Potential fire behavior was lower in burned plots than in unburned controls across all environmental scenarios. In the driest scenario, potential rate of spread ranged from 0.4 to 1.5 m min−1 in burns and 2.7 to 5.5 m min−1 in controls (P < 0.01). Maintaining resilience in these ecosystems at multiple spatial and temporal scales may include a consideration of the natural role of fire in good condition Wyoming big sagebrush ecosystems. This study shows that under these conditions, fire can promote good condition mid-successional ecosystems and can act as a fuel break, slowing the spread and decreasing the intensity of a future wildfire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Baker WL. 2006. Fire and restoration of sagebrush ecosystems. Wildl Soc Bull 34:177–85.

    Article  Google Scholar 

  • Baker WL. 2011. Pre-Euro-American and recent fire in sagebrush ecosystems. In: Knick S, Connelly JW, Eds. Greater sage-grouse: ecology and conservation of a landscape species and its habitats. Studies in avian biology. Berkeley, California: University of California Press. pp 185–201.

  • Baker WL. 2013. Is wildland fire increasing in sagebrush landscapes of the Western United States? Ann Assoc Am Geogr 103:5–19.

    Article  Google Scholar 

  • Boyte SP, Wylie BK. 2015. Near-real-time cheatgrass percent cover in the Northern Great Basin, USA, 2015. Rangelands 38(5):278–84.

    Article  Google Scholar 

  • Bradley BA, Mustard JF. 2006. Characterizing the landscape dynamics of an invasive plant and risk of invasion using remote sensing. Ecol Appl 16:1132–47.

    Article  PubMed  Google Scholar 

  • Brooks ML, D’Antonio CM, Richardson DM, Grace JB, Keeley JE, DiTomaso JM, Hobbs RJ, Pellant M, Pyke D. 2004. Effects of invasive alien plants on fire regimes. BioScience 54:677.

    Article  Google Scholar 

  • Brown, JK. 1974. Handbook for inventorying downed woody material. General technical report INT-16. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. p 24.

  • Canfield R. 1941. Application of line intercept method in sampling range vegetation. J For 39:388–94.

    Google Scholar 

  • Chambers JC, Bradley BA, Brown CS, D’Antonio C, Germino MJ, Grace JB, Hardegree SP, Miller RF, Pyke DA. 2014. Resilience to stress and disturbance, and resistance to Bromus tectorum L. invasion in cold desert shrublands of Western North America. Ecosystems 17:360–75.

    Article  CAS  Google Scholar 

  • Champlin MR. 1982. Big sagebrush (Artemisia tridentata) ecology and management with emphasis on prescribed burning. PhD dissertation, Oregon State University. p 136.

  • Cook BI, Ault TR, Smerdon JE. 2015. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci Adv 1:e1400082.

    Article  PubMed  PubMed Central  Google Scholar 

  • Crawford JA, Olson RA, West NE, Mosley JC, Schroeder MA, Whitson TD, Miller RF, Gregg MA, Boyd CS. 2004. Ecology and management of sage-grouse and sage-grouse habitat. Rangel Ecol Manag 57:2–19.

    Article  Google Scholar 

  • Creutzburg MK, Halofsky JE, Halofsky JS, Christopher TA. 2015. Climate change and land management in the rangelands of Central Oregon. Environ Manag 55:43–55.

    Article  Google Scholar 

  • D’Antonio CM, Vitousek PM. 1992. Biological invasions by exotic grasses, the grass/fire cycle, and global change. Ann Rev Ecol Syst 23:63–87.

    Article  Google Scholar 

  • Davies KW, Svejcar TJ. 2008. Comparison of medusahead-invaded and noninvaded Wyoming big sagebrush steppe in southeastern Oregon. Rangel Ecol Manag 61:623–9.

    Article  Google Scholar 

  • Ellsworth LM, Wrobleski DW, Kauffman JB, Reis SA. 2016. Ecosystem resilience is evident 17 years after fire in Wyoming big sagebrush ecosystems. Ecosphere 7:e01618.

    Article  Google Scholar 

  • Mahalovich MF, McAurthur ED. 2004. Sagebrush (Artemisia spp.) seed and plant transfer guidelines. Nativ Plants (Fall) 5:141–8.

    Article  Google Scholar 

  • Mata-González R, Hunter RG, Coldren CL, McLendon T, Paschke MW. 2007. Modelling plant growth dynamics in sagebrush steppe communities affected by fire. J Arid Environ 69:144–57.

    Article  Google Scholar 

  • McCune B, Grace JB, Urban DL. 2002. Analysis of ecological communities. Gleneden Beach, Oregon: MjM Software Design.

    Google Scholar 

  • Miller RF, Chambers JC, Pyke DA, Pierson FB, Williams CJ. 2013. A review of fire effects on vegetation and soils in the Great Basin Region: response and ecological site characteristics. http://www.treesearch.fs.fed.us/pubs/45208. Last Accessed 14/05/2016.

  • Miller RF, Eddleman L. 2001. Spatial and temporal changes of sage grouse habitat in the sagebrush biome. Corvallis: Oregon State University, Agricultural Experiment Station.

    Google Scholar 

  • Miller RF, Knick ST, Pyke DA, Meinke CW, Hanser SE, Wisdom MJ, Hild AL. 2011. Pre-Euro-American and recent fire in sagebrush ecosystems. In: Knick S, Connelly JW, Eds. Greater sage-grouse: ecology and conservation of a landscape species and its habitats. Studies in avian biology. Berkeley, California: University of California Press. pp 145–85.

  • Miller RF, Heyerdahl EK. 2008. Fine-scale variation of historical fire regimes in sagebrush-steppe and juniper woodland: an example from California, USA. Int J Wildl Fire 17:245.

    Article  Google Scholar 

  • Miller RF, Rose JA. 1999. Fire history and western juniper encroachment in sagebrush steppe. J Range Manag 52:550.

    Article  Google Scholar 

  • Morris LR, Leger EA. 2016. Secondary succession in the sagebrush semidesert 66 years after fire in the Great Basin, USA. Nat Areas J 36:187–93.

    Article  Google Scholar 

  • Murphy T, Naugle DE, Eardley R, Maestas JD, Griffiths T, Pellant M, Stiver SJ. 2013. Trial by fire. Rangelands 35:2–10.

    Article  Google Scholar 

  • Reed-Dustin CM. 2015. Long-term fire effects on plant succession and exotic weeds in protected area sagebrush steppe. Oregon: John Day Fossil Beds National Monument.

    Google Scholar 

  • Rein G, Cleaver N, Ashton C, Pironi P, Torero J. 2008. The severity of smoldering peat fires and damage to the forest soil. Catena 74:304–9.

    Article  Google Scholar 

  • Shultz LM. 2009. Monograph of Artemisia subgenus Tridentatae (Asteraceae-Anthemideae). Syst Bot Monogr 89:1–131.

    Google Scholar 

  • Tisdale EW. 1994. Great Basin region: sagebrush types. In: Shiflet TN, Ed. Rangeland cover types. Society of Range Management Denver, Colorado, USA. pp 40–6.

  • USFWS. 1994. Hart Mountain National Antelope Refuge comprehensive management plan. USA: Department of the Interior.

    Google Scholar 

  • Wambolt CL, Walhof KS, Frisina MR. 2001. Recovery of big sagebrush communities after burning in south-western Montana. J Environ Manag 61:243–52.

    Article  CAS  Google Scholar 

  • Westoby M, Walker B, Noy-Meir I. 1989. Opportunistic management for rangelands not at equilibrium. J Range Manag 42:266.

    Article  Google Scholar 

  • Whisenant SG. 1990. Changing fire frequencies on Idaho’s Snake River Plains: Ecological and management implications. In: McArthur ED, Romney EM, Smith S D, Tueller PT, Eds. Proceedings–Symposium on cheatgrass invasion, shrub die-off, and other aspects of shrub biology and management. General Technical Report INT-276, USDA Forest Service, Intermountain Research Station, Las Vegas, Nevada, USA. pp 4–10.

  • Wright HA, Bailey AW. 1982. Fire Ecology: United States and southern Canada. New York: John Wiley and Sons.

    Google Scholar 

  • Wrobleski DW. 1999. Effects of prescribed fire on Wyoming big sagebrush communities: Implications for ecological restoration of sage grouse habitat. In: M.S. Thesis, Oregon: Oregon State University.

  • Wrobleski DW, Kauffman JB. 2003. Initial effects of prescribed fire on morphology, abundance, and phenology of forbs in big sagebrush communities in southeastern Oregon. Restor Ecol 11:82–90.

    Article  Google Scholar 

  • Ziegenhagen LL, Miller RF. 2009. Postfire recovery of two shrubs in the interiors of large burns in the Intermountain West, USA. West North Am Nat 69:195–205.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Joint Fire Science Program (Project #14-1-02-5) and the Greater Sheldon-Hart Conservation Fund. We thank the staff at HMNAR and field technicians and lab assistants: Heather Wrobleski, C. Norman Swanson, Michelle McDowell, Emily Platt, and Bobby Burdick. We are grateful for the fire modeling advice provided by Susan Pritchard. This project was conducted under Special Use Permit issued by the U.S. Fish and Wildlife Service; however, the methodology, analyses, and conclusions expressed represent the opinions of the author(s) and do not necessarily represent the views, positions, or policies of the Sheldon-Hart Mountain National Wildlife Refuge Complex.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa M. Ellsworth.

Additional information

Author Contributions

LME and JBK designed the study. All authors performed research. SAR and LME analyzed data. All authors contributed to writing the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reis, S.A., Ellsworth, L.M., Kauffman, J.B. et al. Long-Term Effects of Fire on Vegetation Structure and Predicted Fire Behavior in Wyoming Big Sagebrush Ecosystems. Ecosystems 22, 257–265 (2019). https://doi.org/10.1007/s10021-018-0268-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-018-0268-7

Keywords

Navigation