Skip to main content
Log in

White matter integrity in the fronto-striatal accumbofrontal tract predicts impulsivity

  • BRIEF COMMUNICATION
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Frontostriatal projections have been shown to mediate impulsivity. Recent findings have demonstrated that the projection from the prefrontal cortex to the nucleus accumbens (the accumbofrontal tract) can be isolated by using probabilistic tractography on human brain MRI data, specifically, diffusion tensor images (DTI). Using DTI tractography, we isolated the tract and tested its association with the impulsivity. DTI data from 143 individuals obtained from Nathan Kline Institute-Rockland Sample was used along with the impulsivity measure assessed by the UPPS (urgency, premeditation, perseverance, and sensation seeking) impulsive behavior total score. Probabilistic tractography was first performed between the prefrontal cortex and nucleus accumbens, then, as a measure of white matter integrity in the tract, fractional anisotropy was calculated for each individual’s tract. In the multiple regression, accumbofrontal FA showed significant positive association with the impulsivity, suggesting that the accumbofrontal tract integrity may contribute to individual differences in impulsivity. This study bridges the literature in rodents, in which this glutamatergic projection has been shown to mediate impulsive behavior, and the findings in humans which allow the in-vivo isolation of the tract and comparison with behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Achterberg, M., Peper, J. S., van Duijvenvoorde, A. C. K., Mandl, R. C. W., & Crone, E. A. (2016). Frontostriatal white matter integrity predicts development of delay of gratification: a longitudinal study. The Journal of Neuroscience, 36(6), 1954–1961. https://doi.org/10.1523/JNEUROSCI.3459-15.2016.

    Article  CAS  PubMed  Google Scholar 

  • Alexander, A. L., Lee, J. E., Lazar, M., & Field, A. S. (2007). Diffusion tensor imaging of the brain. Neurotherapeutics, 4, 316–329.

    Article  Google Scholar 

  • Basser, P. J., Mattiello, J., & LeBihan, D. (1994). MR diffusion tensor spectroscopy and imaging. Biophysical Journal, 66(1), 259–267. https://doi.org/10.1016/S0006-3495(94)80775-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behrens, T. E. J., Berg, H. J., Jbabdi, S., Rushworth, M. F. S., & Woolrich, M. W. (2007). Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage, 34, 144–155.

    Article  CAS  Google Scholar 

  • Belin, D., Mar, A. C., Dalley, J. W., Robbins, T. W., & Everitt, B. J. (2008). High impulsivity predicts the switch to compulsive cocaine-taking. Science, 320(5881), 1352–1355. https://doi.org/10.1126/science.1158136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjork, J. M., Momenan, R., & Hommer, D. W. (2009). Delay discounting correlates with proportional lateral frontal cortex volumes. Biological Psychiatry, 65(8), 710–713. https://doi.org/10.1016/j.biopsych.2008.11.023.

    Article  PubMed  Google Scholar 

  • Dalley, J. W., Fryer, T. D., Brichard, L., Robinson, E. S. J., Theobald, D. E. H., Lääne, K., et al. (2007). Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science, 315(5816), 1267–1270. https://doi.org/10.1126/science.1137073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalley, J. W., & Robbins, T. W. (2017). Fractionating impulsivity: neuropsychiatric implications. Nature Reviews Neuroscience, 18(3), 158–171.

    Article  CAS  Google Scholar 

  • Del Arco, A., & Mora, F. (2008). Prefrontal cortex–nucleus accumbens interaction: in vivo modulation by dopamine and glutamate in the prefrontal cortex. Microdialysis: Recent Developments, 90(2), 226–235. https://doi.org/10.1016/j.pbb.2008.04.011.

    Article  CAS  Google Scholar 

  • Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., et al. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31, 968–980.

    Article  Google Scholar 

  • Dubourg, L., Schneider, M., Padula, M. C., Chambaz, L., Schaer, M., & Eliez, S. (2017). Implication of reward alterations in the expression of negative symptoms in 22q11.2 deletion syndrome: a behavioural and DTI study. Psychological Medicine, 1–12. https://doi.org/10.1017/S0033291716003482.

  • Hampton, W. H., Alm, K. H., Venkatraman, V., Nugiel, T., & Olson, I. R. (2017). Dissociable frontostriatal white matter connectivity underlies reward and motor impulsivity. NeuroImage. https://doi.org/10.1016/j.neuroimage.2017.02.021.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoptman, M. J., Ardekani, B. A., Butler, P. D., Nierenberg, J., Javitt, D. C., & Lim, K. O. (2004). DTI and impulsivity in schizophrenia: a first voxelwise correlational analysis. Neuroreport, 15, 2467–2470.

    Article  Google Scholar 

  • Hu, Y., Salmeron, B., Gu, H., Stein, E. A., & Yang, Y. (2015). Impaired functional connectivity within and between frontostriatal circuits and its association with compulsive drug use and trait impulsivity in cocaine addiction. JAMA Psychiatry, 72(6), 584–592. https://doi.org/10.1001/jamapsychiatry.2015.1.

    Article  PubMed  Google Scholar 

  • Jentsch, D. J., & Taylor, R. J. (1999). Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology (Berl), 146(4), 373–390. https://doi.org/10.1007/PL00005483.

    Article  CAS  Google Scholar 

  • Karlsgodt, K. H., John, M., Ikuta, T., Rigoard, P., Peters, B. D., Derosse, P., et al. (2015). The accumbofrontal tract: diffusion tensor imaging characterization and developmental change from childhood to adulthood. Human Brain Mapping, 36(12), 4954–4963. https://doi.org/10.1002/hbm.22989.

    Article  PubMed  PubMed Central  Google Scholar 

  • Konrad, A., Dielentheis, T. F., Masri, E., Bayerl, D., Fehr, M., Gesierich, C., T., et al. (2010). Disturbed structural connectivity is related to inattention and impulsivity in adult attention deficit hyperactivity disorder. European Journal of Neuroscience, 31(5), 912–919. https://doi.org/10.1111/j.1460-9568.2010.07110.x.

  • Mar, A. C., Walker, A. L., Theobald, D. E., Eagle, D. M., & Robbins, T. W. (2011). Dissociable effects of lesions to orbitofrontal cortex subregions on impulsive choice in the rat. The Journal of neuroscience: The Official Journal of the Society for Neuroscience, 31(17), 6398–6404. https://doi.org/10.1523/JNEUROSCI.6620-10.2011.

    Article  CAS  Google Scholar 

  • Peper, J. S., Mandl, R. C. W., Braams, B. R., de Water, E., Heijboer, A. C., Koolschijn, P. C., M. P., & Crone, E. A. (2012). Delay discounting and frontostriatal fiber tracts: a combined DTI and MTR study on impulsive choices in healthy young adults. Cerebral Cortex. https://doi.org/10.1093/cercor/bhs163.

    Article  PubMed  Google Scholar 

  • Rigoard, P., Buffenoir, K., Jaafari, N., Giot, J. P., Houeto, J. L., Mertens, P., et al. (2011). The accumbofrontal fasciculus in the human brain: a microsurgical anatomical study. Neurosurgery, 68(4), 1102–1111. https://doi.org/10.1227/NEU.0b013e3182098e48.

    Article  PubMed  Google Scholar 

  • Roesch, M. R., Bryden, D. W., Cerri, D. H., Haney, Z. R., & Schoenbaum, G. (2012). Willingness to wait and altered encoding of time-discounted reward in the orbitofrontal cortex with normal aging. The Journal of Neuroscience, 32(16), 5525–5533. https://doi.org/10.1523/JNEUROSCI.0586-12.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samanez-Larkin, G. R., Levens, S. M., Perry, L. M., Dougherty, R. F., & Knutson, B. (2012). Frontostriatal white matter integrity mediates adult age differences in probabilistic reward learning. The Journal of neuroscience: The Official Journal of the Society for Neuroscience, 32(15), 5333–5337. https://doi.org/10.1523/JNEUROSCI.5756-11.2012.

    Article  CAS  Google Scholar 

  • Sanefuji, M., Craig, M., Parlatini, V., Mehta, M. A., Murphy, D. G., Catani, M., et al. (2017). Double-dissociation between the mechanism leading to impulsivity and inattention in attention deficit hyperactivity disorder: a resting-state functional connectivity study. Is a “single” brain model sufficient? 86, 290–302. https://doi.org/10.1016/j.cortex.2016.06.005.

    Article  Google Scholar 

  • Song, S.-K., Sun, S.-W., Ju, W.-K., Lin, S.-J., Cross, A. H., & Neufeld, A. H. (2003). Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. NeuroImage, 20, 1714–1722.

    Article  Google Scholar 

  • Song, S.-K., Sun, S.-W., Ramsbottom, M. J., Chang, C., Russell, J., & Cross, A. H. (2002). Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage, 17, 1429–1436.

    Article  Google Scholar 

  • Squeglia, L., Sorg, S., Jacobus, J., Brumback, T., Taylor, C., & Tapert, S. (2015). Structural connectivity of neural reward networks in youth at risk for substance use disorders. Psychopharmacology (Berl), 232(13), 2217–2226. https://doi.org/10.1007/s00213-014-3857-y.

    Article  CAS  Google Scholar 

  • Tschernegg, M., Pletzer, B., Schwartenbeck, P., Ludersdorfer, P., Hoffmann, U., & Kronbichler, M. (2015). Impulsivity relates to striatal gray matter volumes in humans: evidence from a delay discounting paradigm. Frontiers in Human Neuroscience, 9. https://doi.org/10.3389/fnhum.2015.00384.

  • van den Bos, W., Rodriguez, C. A., Schweitzer, J. B., & McClure, S. M. (2014). Connectivity strength of dissociable striatal tracts predict individual differences in temporal discounting. The Journal of Neuroscience, 34(31), 10298–10310. https://doi.org/10.1523/JNEUROSCI.4105-13.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winstanley, C. A., Eagle, D. M., & Robbins, T. W. (2006). Behavioral models of impulsivity in relation to ADHD: translation between clinical and preclinical studies. Attention Deficit Hyperactivity Disorder From A Neurosciences And Behavioral Approach, 26(4), 379–395. https://doi.org/10.1016/j.cpr.2006.01.001.

    Article  Google Scholar 

  • Zalocusky, K. A., Ramakrishnan, C., Lerner, T. N., Davidson, T. J., Knutson, B., & Deisseroth, K. (2016). Nucleus accumbens D2R cells signal prior outcomes and control risky decision-making. Nature. https://doi.org/10.1038/nature17400.

Download references

Acknowledgements

This work was supported in part by R01 MH101506 grant from the NIH to KHK. Image preprocessing was performed using the supercomputer cluster at the Mississippi Center for Supercomputing Research partly funded by the National Science Foundation (EPS-0903787).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshikazu Ikuta.

Ethics declarations

Disclosure

No conflict of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikuta, T., del Arco, A. & Karlsgodt, K.H. White matter integrity in the fronto-striatal accumbofrontal tract predicts impulsivity. Brain Imaging and Behavior 12, 1524–1528 (2018). https://doi.org/10.1007/s11682-017-9820-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-017-9820-x

Keywords

Navigation