Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interaction trends between single metal atoms and oxide supports identified with density functional theory and statistical learning

Abstract

Single-atom catalysts offer high reactivity and selectivity while maximizing utilization of the expensive active metal component. However, they are susceptible to sintering, where single metal atoms agglomerate into thermodynamically stable clusters. Tuning the binding strength between single metal atoms and oxide supports is essential to prevent sintering. We apply density functional theory, together with a statistical learning approach based on least absolute shrinkage and selection operator regression, to identify property descriptors that predict interaction strengths between single metal atoms and oxide supports. Here, we show that interfacial binding is correlated with readily available physical properties of both the supported metal, such as oxophilicity measured by oxide formation energy, and the support, such as reducibility measured by oxygen vacancy formation energy. These properties can be used to empirically screen interaction strengths between metal–support pairs, thus aiding the design of single-atom catalysts that are robust against sintering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Adsorption geometries of metals on CeO2(111) and MgO(100).
Fig. 2: Correlation between metal/support adsorption energies and metal adatom’s oxide formation enthalpy.
Fig. 3: Correlation between the slopes from Fig. 2 and the support’s oxygen vacancy formation energy.
Fig. 4: Correlation between metal/support adsorption energies and the support’s oxygen vacancy formation energy.
Fig. 5: DOS plots of Ir/CeO2(111) and Ag/CeO2(111).
Fig. 6: Metal–support interactions on CeO2(111) and MgO(100) supports.
Fig. 7: Comparison between descriptor-predicted and DFT binding energies.

Similar content being viewed by others

References

  1. Haruta, M. Catalysis of gold nanoparticles deposited on metal oxides. CATTECH 6, 102–115 (2002).

    Article  CAS  Google Scholar 

  2. Valden, M., Lai, X. & Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281, 1647–1650 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Fiedorow, R. M. J., Chahar, B. S. & Wanke, S. E. The sintering of supported metal catalysts. J. Catal. 51, 193–202 (1978).

    Article  CAS  Google Scholar 

  4. Bruix, A. et al. A new type of strong metal–support interaction and the production of H2 through the transformation of water on Pt/CeO2(111) and Pt/CeOx/TiO2(110) catalysts. J. Am. Chem. Soc. 134, 8968–8974 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Branda, M. M., Hernandez, N. C., Sanz, J. F. & Illas, F. Density functional theory study of the interaction of Cu, Ag, and Au atoms with the regular CeO2(111) surface. J. Phys. Chem. C 114, 1934–1941 (2010).

    Article  CAS  Google Scholar 

  6. Flytzani-Stephanopoulos, M. & Gates, B. C. Atomically dispersed supported metal catalysts. Annu. Rev. Chem. Biomol. Eng. 3, 545–574 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Campbell, C. T. Catalyst–support interactions: electronic perturbations. Nat. Chem. 4, 597–598 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Campbell, C. T. & Sellers, J. R. V. Anchored metal nanoparticles: effects of support and size on their energy, sintering resistance and reactivity. Faraday Discuss. 162, 9–30 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Campbell, C. T. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity. Acc. Chem. Res. 46, 1712–1719 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Hemmingson, S. L. & Campbell, C. T. Trends in adhesion energies of metal nanoparticles on oxide surfaces: understanding support effects in catalysis and nanotechnology. ACS Nano. 11, 1196–1203 (2016).

    Article  CAS  Google Scholar 

  11. Zhdanov, V. P. Ostwald ripening of charged supported metal nanoparticles: Schottky model. Phys. E 71, 130–133 (2015).

    Article  CAS  Google Scholar 

  12. Yati, I. Effects of sintering-resistance and large metal–support interface of alumina nanorod-stabilized Pt nanoparticle catalysts on the improved high temperature water gas shift reaction activity. Catal. Commun. 56, 11–16 (2014).

    Article  CAS  Google Scholar 

  13. Gholami, R., Alyani, M. & Smith, K. Deactivation of Pd catalysts by water during low temperature methane oxidation relevant to natural gas vehicle converters. Catalysts 5, 561–594 (2015).

    Article  CAS  Google Scholar 

  14. Liu, W. et al. Single-atom dispersed Co–Nl–C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes. Chem. Sci. 7, 5758–5764 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tauster, S. J., Fung, S. C. & Garten, R. L. Strong metal–support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 100, 170–175 (1978).

    Article  CAS  Google Scholar 

  16. Maat, H. J. & Moscou, L. A study of the influence of platinum crystallite size on the selectivity of platinum reforming catalysts. In Proc. 3rd Int. Cong. Catal. 1277 (North Holland Publishing Company, Amsterdam, 1965).

  17. Chandler, B. D. Strong metal–support interactions: an extra layer of complexity. Nat. Chem. 9, 108–109 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Matsubu, J. C. et al. Adsorbate-mediated strong metal–support interactions in oxide-supported Rh catalysts. Nat. Chem. 9, 120–127 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Addou, R. et al. Influence of hydroxyls on Pd atom mobility and clustering on rutile TiO2(011)-2 x 1. ACS Nano 8, 6321–6333 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Strayer, M. E. et al. Charge transfer stabilization of late transition metal oxide nanoparticles on a layered niobate support. J. Am. Chem. Soc. 137, 16216–16224 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lu, Z. S. & Yang, Z. X. Interfacial properties of NM/CeO2(111) (NM = noble metal atoms or clusters of Pd, Pt and Rh): a first principles study. J. Phys. Condens. Matter 22, 10 (2010).

    Google Scholar 

  22. Rim, K. T. et al. Charging and chemical reactivity of gold nanoparticles and adatoms on the (111) surface of single-crystal magnetite: a scanning tunneling microscopy/spectroscopy study. J. Phys. Chem. C 113, 10198–10205 (2009).

    Article  CAS  Google Scholar 

  23. Abbet, S. et al. Acetylene cyclotrimerization on supported size-selected Pdn clusters (1 ≤ n ≤ 30): one atom is enough! J. Am. Chem. Soc. 122, 3453–3457 (2000).

    Article  CAS  Google Scholar 

  24. Chen, Y. Improved performance of supported single-atom catalysts via increased surface active sites. Catal. Commun. 75, 74–77 (2016).

    Article  CAS  Google Scholar 

  25. Campbell, C. T. & Mao, Z. Chemical potential of metal atoms in supported nanoparticles: dependence upon particle size and support. ACS Catal. 7, 8460–8466 (2017).

    Article  CAS  Google Scholar 

  26. Hastie, T., Tibshirani, R. & Friedman, J. Linear Methods for Regression (Springer, New York, 2009).

  27. Giordano, L., Baistrocchi, M. & Pacchioni, G. Bonding of Pd, Ag, and Au atoms on MgO(100) surfaces and MgO/Mo(100) ultra-thin films: a comparative DFT study. Phys. Rev. B 72, 11 (2005).

    Article  CAS  Google Scholar 

  28. Hinnemann, B. & Carter, E. A. Adsorption of Al, O, Hf, Y, Pt, and S atoms on α-Al2O3 (0001). J. Phys. Chem. C 111, 7105–7126 (2007).

    Article  CAS  Google Scholar 

  29. Melnikov, V. V., Yeremeev, S. V. & Kulkova, S. E. Theoretical investigations of 3d-metal adsorption on the α-AL2O3 (0001) surface. Russ. Phys. J. 54, 704–712 (2011).

    Article  CAS  Google Scholar 

  30. Hernández, N. C., Graciani, J., Márquez, A. & Sanz, J. F. Cu, Ag and Au atoms deposited on the α-Al2O3(0001) surface: a comparative density functional study. Surf. Sci. 575, 189–196 (2005).

    Article  CAS  Google Scholar 

  31. Hosokawa, S., Taniguchi, M., Utani, K., Kanai, H. & Imamura, S. Affinity order among noble metals and CeO2. Appl. Catal. A 289, 115–120 (2005).

    Article  CAS  Google Scholar 

  32. Si, R. & Flytzani-Stephanopoulos, M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction. Angew. Chem. Int. Ed. 47, 2884–2887 (2008).

    Article  CAS  Google Scholar 

  33. Noronha, F. B., Fendley, E. C., Soares, R. R., Alvarez, W. E. & Resasco, D. E. Correlation between catalytic activity and support reducibility in the CO2 reforming of methane over Pt/CexZr1−xO2 catalysts. Chem. Eng. J. 82, 21–31 (2001).

    Article  CAS  Google Scholar 

  34. Szabova, L., Camellone, M. F., Huang, M., Matolin, V. & Fabris, S. Thermodynamic, electronic and structural properties of Cu/CeO2 surfaces and interfaces from first-principles DFT + U calculations. J. Chem. Phys. 133, 234705 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Murgida, G. E. & Ganduglia-Pirovano, M. V. Evidence for subsurface ordering of oxygen vacancies on the reduced CeO2(111) surface using density-functional and statistical calculations. Phys. Rev. Lett. 110, 246101 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Artiglia, L. et al. Introducing time resolution to detect Ce3+ catalytically active sites at the Pt/CeO2 interface through ambient pressure X-ray photoelectron spectroscopy. J. Phys. Chem. Lett. 8, 102–108 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Eldar, Y. C. & Kutyniok, G. Compressed Sensing: Theory and Applications (Cambridge Univ. Press, Cambridge, 2012).

  38. Ghiringhelli, L. M., Vybiral, J., Levchenko, S. V., Draxl, C. & Scheffler, M. Big data of materials science: critical role of the descriptor. Phys. Rev. Lett. 114, 105503 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Ghiringhelli, L. M. et al. Learning physical descriptors for materials science by compressed sensing. New J. Phys. 19, 023017 (2017).

    Article  Google Scholar 

  40. Goldsmith, B. et al. Uncovering structure–property relationships of materials by subgroup discovery. New J. Phys. 19, 013031 (2017).

    Article  Google Scholar 

  41. Pilania, G. et al. Machine learning bandgaps of double perovskites. Sci. Rep. 6, 19375 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Medasani, B. et al. Predicting defect behavior in B2 intermetallics by merging ab initio modeling and machine learning. npj Comput. Mater. 2, 1 (2016).

    Article  CAS  Google Scholar 

  43. Oliynyk, A. O., Adutwum, L. A., Harynuk, J. J. & Mar, A. Classifying crystal structures of binary compounds AB through cluster resolution feature selection and support vector machine analysis. Chem. Mater. 28, 6672–6681 (2016).

    Article  CAS  Google Scholar 

  44. Hong, W. T., Welsch, R. E. & Shao-Horn, Y. Descriptors of oxygen-evolution activity for oxides: a statistical evaluation. J. Phys. Chem. C 120, 78–86 (2016).

    Article  CAS  Google Scholar 

  45. John, J. & Bloch, A. N. Quantum-defect electronegativity scale for nontransition elements. Phys. Rev. Lett. 33, 1095–1098 (1974).

    Article  Google Scholar 

  46. Zunger, A. Systematization of the stable crystal structure of all AB-type binary compounds: a pseudopotential orbital-radii approach. Phys. Rev. B 22, 5839 (1980).

    Article  CAS  Google Scholar 

  47. Waber, J. T. & Cromer, D. T. Orbital radii of atoms and ions. J. Chem. Phys. 42, 4116–4123 (1965).

    Article  CAS  Google Scholar 

  48. Miedema, A. R., de Châtel, P. F. & de Boer, F. R. Cohesion in alloys—fundamentals of a semi-empirical model. Phys. B + C 100, 1–28 (1980).

    CAS  Google Scholar 

  49. Brown, I. D. The Chemical Bond in Inorganic Chemistry: The Bond Valence Model (Oxford Univ. Press, Oxford, 2002).

  50. Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  52. Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

    Article  CAS  Google Scholar 

  53. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  54. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  55. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article  CAS  Google Scholar 

  56. Kanoun, M. B., Reshak, A. H., Kanoun-Bouayed, N. & Goumri-Said, S. Evidence of Coulomb correction and spin–orbit coupling in rare-earth dioxides CeO2, PrO2 and TbO2: an ab initio study. J. Magn. Magn. Mater. 324, 1397–1405 (2012).

    Article  CAS  Google Scholar 

  57. Mayernick, A. D. & Janik, M. J. Methane activation and oxygen vacancy formation over CeO2 and Zr, Pd substituted CeO2 surfaces. J. Phys. Chem. C 112, 14955–14964 (2008).

    Article  CAS  Google Scholar 

  58. Krcha, M. D. & Janik, M. J. Examination of oxygen vacancy formation in Mn-doped CeO2 (111) using DFT + U and the hybrid functional HSE06. Langmuir 29, 10120–10131 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Neugebauer, J. & Scheffler, M. Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Phys. Rev. B 46, 16067–16080 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation grant CHE-1505607.

Author information

Authors and Affiliations

Authors

Contributions

N.J.O. completed the DFT calculations and associated data analysis. A.S.M.J. completed the statistical learning analysis. The project idea was conceived by M.J.J. and T.P.S. All authors contributed to writing the manuscript and approved the final version.

Corresponding authors

Correspondence to Michael J. Janik or Thomas P. Senftle.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supporting Information

Supplementary Figures 1–13; Supplementary Tables 1–11; Supplementary Methods; Supplementary References

Supplementary Data

The values of all primary descriptors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Connor, N.J., Jonayat, A.S.M., Janik, M.J. et al. Interaction trends between single metal atoms and oxide supports identified with density functional theory and statistical learning. Nat Catal 1, 531–539 (2018). https://doi.org/10.1038/s41929-018-0094-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-018-0094-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing